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Numerical approach to hopping conduction 
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(U. A. 407 CNRS), P/ace E. Bataillon, 34060 Montpellier Cedex, France 

A numerical method for calculation of the polarization conductivity has been developed. This 
approach has been applied to the correlated barrier hopping (CBH) and quantum mechanical 
tunnelling (QMT) models in the case of monoelectronic hops. These calculations have been 
performed on well-known solids such as carbon (HTT 600 ~ and badly organized molyb- 
denum and tungsten sulphides. The agreement between theory and experimental results is 
more satisfying than in a previous approach. The parameters W M and N o are determined for the 
CBH model, and N(EF) for the QMT model. 

1. I n t r o d u c t i o n  
Following Anderson's work [1] on the concept of  
localized states in amorphous or badly organized 
compounds, Miller and Abrahams [2] developed the 
study of  the transfer of charge carriers between these 
states. Since then, a set of  models has been devised to 
describe, particularly, the evolution of  conduction as 
a function of frequency [3-8]. In most cases the o- .... 
values measured are considered as being the sum of 
the two following terms 

.... = ~'(co) + ~dc (1) 

a'(co) is the real part of the polarization conductivity 
caused by electron movement under the effect of  an 
alternating electrical field with a circular frequency co. 
(rd.c. is the conductivity for direct current. 

The behaviour of the experimental results is gener- 
ally described by a law with the following form 

a'(co) = A(T)co"  (2) 

It is therefore possible to determine parameters A (T)  
and s experimentally. 

This type of variation is usually associated with 
the displacement of  carriers which move within the 
sample by discrete hops of  length R between randomly 
distributed localized sites. Analysis of  polarization 
moments associated with this movement leads to [6, 8] 

a'(co) N 2 fR~ co2r dR (3) 
= 2 JRo ~(R)p(R)  1 + co2~2 

where N is the number of  sites per unit volume, ~(R) 
is the polarizability. Pollak and Geballe [9] proposed 
that the following expression should be chosen for 

e2R 2 

~(R) - 1 2 k T  (4) 

Starting from a site, p ( R )  is the probability of  another 
site being located at a distance between R and R + dR. 

Finally, r is the relaxation time associated with a 
hop of  distance R. An Equation associating v with R 
is required in order to continue the calculation using 
Equation 3. It is possible to relate these quantities by 
using hypotheses concerning the way in which carriers 
cross the potential barrier between two sites. 
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Two possibilities can be envisaged: either tunnelling 
or thermal activation. In both cases, the relationship 
between r and R can be used to calculate the integral 
of Equation 3 as a function of a single parameter. 

2. Calculat ion method 
We attempted to maintain T as a single parameter 
throughout the study. Integration limits are, there- 
fore, ~ (lower) and r~ (upper). % = 1/v o where v0 is the 
vibration frequency of the particle trapped at its site 
[3, 4]. r~ is determined by calculation and is the value 
for which the integral is convergent. In this case we 
chose a text to guarantee a relative accuracy of  0.01% 
of the calculated value of  a'(co). 

The work described mainly differs from previous 
studies in the integration method used. It was decided 
to carry out numerical calculation of the value of the 
integral for which there is no analytical solution. As 
far as we know, this integration has always been car- 
ried out using approximations justified, of course, but 
the influence of which on the numerical results is not 
always specified. Thus, for example, it is generally 
assumed that 

integral = co2~ 2 = ~ 0  1 + ~ (5) 

However, this value is only correct if cov is sufficiently 
high, i.e. for high frequencies, or for large values of ~, 
physically unacceptable. Thus, I = ~/4 is found when 
values are limited to ~ = 10 _2 sec, and co = 100Hz. 
This means that I is not independent of co in the range 
of the most accessible ~. This observation justifies the 
use of  numerical methods to calculate the real part of 
polarization conductivity. 

3. Experimental  results 
Conductivity was measured as a function of frequency 
in various amorphous compounds. We considered 
that the set of  samples examined was satisfactorily 
representative of  some of  the different types of  com- 
pounds encountered in the field of badly organized 
materials. Our experiments were thus carried out on 
the following samples: 
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(i) anthracene coke, the highest treatment tempera- 
ture (HTT) of which was 600~ [10]; 

(ii) amorphous molybdenum sulphide treated at 
195~ composition was such that S : M o  = 3.0 [11]; 

(iii) two other molybdenum sulphides treated at 
higher temperatures (500 and 700~ the com- 
position was characterized by an S : M o  ratio of 2.0. 
They were nevertheless distinct, particularly with 
regard to the degree of crystallinity [11]; 

(iv) finally, three tungsten sulphides prepared at 
temperatures lower than 300~ [12]. 

In all these samples, the conductivity G.~. measured 
as a function of frequency obeyed the laws given in 
Equations 1 and 2 (see Figs 1, 2, 5 and 6). However, 
the behaviour of the parameter s varied and the 
samples can be divided into two groups in this respect: 

1. s is independent of temperature for carbon 
samples with HTT = 600~ and molybdenum tri- 
sulphide (TT 195 ~ C). 

2. s varies as a function of temperature in all the 
other samples. 
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Figure 2 A.c. conductivity of  a tungsten sulphide (example of 
WSz6 ). The solid lines are calculated using the CBH model. 
(1, T =  265K; 2, T =  323K; 3, T =  359K; 4, T =  388K; 
5, T =  428K.) 

4. Interpretation 
Hopping conduction models lead to two forms of 
behaviour of s as a function of T. When the values of 
s depend on T, the models generally used assume that 
the crossing of the potential barrier between two sites 
is thermally activated. These models are generally 
associated with the mechanism described by the term 
correlated barrier hopping (CBH). When s is indepen- 
dent of T, this behaviour is associated with tunnelling 
described by the quantum mechanical-tunnelling 
model (QMT). 

4.1. Use of the  CBH model  
This model was developed by Elliott [13], and is based 
on the following three basic hypotheses. 

1. Electron hopping is caused by thermally acti- 
vated crossing of the potential barrier W separating 
two sites. Pollak and Pike [14] demonstrated that the 
relaxation time associated with this mechanism takes 

the form 

z = % exp (W/kT) (6) 

where z0 has already been defined. 
2. The height W of the potential barrier is related to 

the distance R between two sites, assuming that cou- 
lombic interactions are predominant [15, 16] 

4e 2 
W M -  W = - -  (7) 

esR 

where WM is the energy required to transport an elec- 
tron from infinity to a site; Zs can be considered as the 
static dielectric constant of the material. 

3. The probability of finding a site at distance R 
from another site is homogeneous and isotropic, 
giving 

p(R)dR = 4~zR2dR (8) 

The use of the three basic hypotheses gives 

I E 

-3  

-5  

tog f (Hz} 

Figure 1 A.c. conductivity of  MoS 2 (TT 700~ Comparison 
between theory (CBH model solid lines) and experimental results. 
(1, T =  208K; 2, T =  225K; 3, T =  242K; 4, T =  257K; 
5, T = 273K.) 

- 24 gse) 1 -1- (02"[ 2 d"c (9) 

Unlike the methods used previously [3-8], at this 
stage of calculation, R is expressed as a function of z, 
z0 and WM 

4e2[ 
R = esWM 1 -- ~ l n  ~o (10) 

T A B L E  I Values of Wu and the number of sites N as a func- 
tion of the composition of the sulphides (CHB) model) 

Compound TT( ~ C) WM(eV ) N(cm 3) 

WS2. 8 200 0.57 2.2 • 10 TM 

WS26 230 0.54 2 x 10 m 
WS2.5 260 0.52 2 x 1018 
MoS2. z 500 0.60 I • 10 TM 

MoS 2 700 0.67 7.8 x 1016 
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Figure 3 Numerical calculation of  the polarization conductivity, for 
different values of  r 0. 

This expression substituted into Equation 9 leads to 

,(co) _ ~N2 ( 4e2 ~ 6 
24 &o \ e s W M / /  

(11) 

We then checked that our numerical integration [17] 
led to the equation 

a'(~o) = A(T)o  *(r/ (12) 

The variation of parameter s with T, calculated 
numerically, is described satisfactorily by the law 
proposed by Long [16] for single-electron hops 

6kT 
s = 1 -  (13) 

WM + kT In ((o%) 

We have also shown that WM has a lower limit 
below which the validity of  the model must be care- 
fully verified [17]. 
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Figure 5 Frequency-dependent conductivity of  the carbon (HTT 
600~ (1, T = 165K; 2, T = 190K; 3, T = 216K;4 ,  T = 233K; 
5, T = 268 K; the solid lines are calculated using the Q M T  model.) 

4.2. Appl icat ion of the CBH model 
This new method of numerical calculation was applied 
to two series of chalcogenides: the two amorphous 
molybdenum sulphides treated at 500 and 700 ~ C and 
the three amorphous tungsten sulphides. In Figs 1 and 
2 the experimental measurements are plotted against 
the theoretical curves obtained by the use of Equations 
1 and 11. 

It was found that this method also determined the 
energy value W M more accurately. The values in 
Table I are larger than those previously proposed [11], 
being closer to the d.c. activation energy. 

4.3. Use of  the  Q M T  m o d e l  
Pollak and Geballe [9] were the first to propose such 
a model. Their theory was refined and developed par- 
ticularly by Mott  and Davis [3]. The two following 
basic hypotheses are the fundamentals of  the model. 

1. Electron transitions between two sites occur 
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Figure 4 Numerical calculation of  the polarization conductivity 
(solid lines) in comparison to results from the analytical Equation 
16 (*). 
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Figure 6 A.c. conductivity of  MoS 3 (TT 195~ as a function of  
frequency, in comparison to the calculated values (solid lines) using 
the Q M T  model. (1, T =  165K;2 ,  T =  190K;3 ,  T = 2 1 6 K ; 4 ,  
T = 233 K). 
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T A B L E  II  Values of  s and the densities of  states N(Ev) for 
carbon and molybdenum trisulphide (QMT model) 

Compound  s N(Ev)(eV -I cm -3) 

Carbon (HTT 600~ 0.61 2.6 • 1019 
MoS 3 (TT 195~ 0.79 6 x 1020 

by tunnelling through a potential barrier between 
them. It has been demonstrated that the relaxation 
time associated with this mechanism takes the form 
[2, 3, 12] 

= ~0 exp (2~R) (14) 

In this equation, % has the meaning attributed to it 
above and c~ is defined so that exp ( - eR) is the rate at 
which the wavefunction falls off with distance. R is 
still the hopping distance. 

2. The spatial probability of finding a site at a dis- 
tance R, from a given site is spherically symmetric (see 
Equation 8). 

It can be shown that the use of these two basic 
hypotheses leads to [8] 

7zNZ e 2 
~r'(~o) - 6 k r  (2~)-5c~ fi0 In 

(D 
x 1 + co2z 2 dr (15) 

We have confirmed by our numerical calculation that 
Equation 15 leads to the functional dependence 
observed experimentally (Equation 12). To do this, we 
first considered a fictitious set of samples character- 
ized by N = 1018cm -3, c~ -1 = 0.3nm; T = 100K. 
We thus assumed that we had measured, as a function 
of frequency between 1 kHz and 10 MHz, the polariz- 
ation conductivity of a series of samples characterized 
by these parameters and by relaxation times % varying 
f r o m  10 -14 to 10 -9  sec .  

The logarithmic representation of the variations of 
a'(co) as a function of  frequency is shown in Fig. 3. 
The behaviour observed experimentally (Equation 12) 
is reproduced by the calculated curves with the 
smallest values of %. 

As can be seen the slopes of the curves depend on 
the values of %. 

The investigation was continued by comparing the 
numerical results with those published by Mott and 
Davis [3] who, with a certain number of approxi- 
mations, gave an analytical expression for o-'(co) 

[(')1 a'(oJ) = A(T)o9 In ~ (16) 

This comparison is shown in Fig. 4 where it can be 
seen that although the behaviour of s as a function of 
r0 is clearly of the same type, agreement is only satisfy- 
ing for values of r0 lower than 10 -~ sec in the 
frequency range generally explored. 

4.4. Appl icat ion of the QMT model 
We have also used this numerical method to describe 
the behaviour of a low-temperature anthracene coke 
(HTT 600 ~ C) (Fig. 5) and an amorphous molyb- 
denum sulphide (MoS3TT = 195 ~ C) (Fig. 6). 

These figures also show the quality of the theor- 
etical fits obtained by numerical calculation of a'(co) 
using Equation 15. The parameters calculated in this 
way are shown in Table II, where N(Ev) are the 
densities of states at the Fermi level (N = kTN(EF). 

5. Conclusion 
The polarization conductivity was calculated numeri- 
cally for the models used most commonly to describe 
hopping conduction. 

The compounds studied are characterized by rela- 
tively low values of energy, WM, associated with 
localized sites. The behaviour of their electronic 
properties is not accurately described in all cases by 
the classical approximations. We have, nevertheless, 
been able to show that the behaviour can be accounted 
for by the two hopping models when numerical 
methods are used. 

This type of numerical approach could easily be 
extended to many different compounds, including 
other chalcogenides, the electrical properties of which 
display similar behaviour. 
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